Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 347: 123714, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452836

RESUMO

Marine pollution is becoming ubiquitous in the environment. Observations of pollution on beaches, in the coastal ocean, and in organisms in the Antarctic are becoming distressingly common. Increasing human activity, growing tourism, and an expanding krill fishing industry along the West Antarctic Peninsula all represent potential sources of plastic pollution and other debris (collectively referred to as debris) to the region. However, the sources of these pollutants from point (pollutants released from discrete sources) versus non-point (pollutants from a large area rather than a specific source) sources are poorly understood. We used buoyant simulated particles released in a high-resolution physical ocean model to quantify pollutant loads throughout the region. We considered non-point sources of debris from the Antarctic Circumpolar Current, Bellingshausen Sea, Weddell Sea, and point source pollution from human activities including tourism, research, and fishing. We also determined possible origins for observed debris based on data from the Southern Ocean Observing System and Palmer Long-Term Ecological Research program. Our results indicate that point source pollution released in the coastal Antarctic is more likely to serve as a source for observed debris than non-point sources, and that the dominant source of pollution is region-specific. Penguin colonies in the South Shetland and Elephant Islands had the greatest debris load from point sources whereas loads from non-point sources were greatest around the southernmost colonies. Penguin colonies at Cornwallis Island and Fort Point were exposed to the highest theoretical debris loads. While these results do not include physical processes such as windage and Stokes Drift that are known to impact debris distributions and transport in the coastal ocean, these results provide critical insights to building an effective stratified sampling and monitoring effort to better understand debris distributions, concentrations, and origins throughout the West Antarctic Peninsula.


Assuntos
Poluentes Ambientais , Spheniscidae , Animais , Humanos , Regiões Antárticas , Poluição Ambiental , Monitoramento Ambiental/métodos
2.
Sci Adv ; 10(10): eadl5528, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38446890

RESUMO

Accurate assessments of human-wildlife risk associated with industrial fishing are critical for the conservation of marine top predators. Automatic Identification System (AIS) data provide a means of mapping fishing and estimating human-wildlife risk; however, risk can be obscured by gaps in the AIS record due to technical issues and intentional disabling. We assessed the extent to which unseen fishing vessel activity due to AIS gaps obscured estimates of overlap between fishing vessel activity and 14 marine predators including sharks, tunas, mammals, seabirds, and critically endangered leatherback turtles. Among vessels equipped with AIS in the northeast Pacific, up to 24% of total predator overlap with fishing vessel activity was unseen, and up to 36% was unseen for some individual species. Waters near 10°N had high unseen overlap with sharks yet low reported shark catch, revealing potential discrepancies in self-reported datasets. Accounting for unseen fishing vessel activity illuminates hidden human-wildlife risk, demonstrating challenges and solutions for transparent and sustainable marine fisheries.


Assuntos
Caça , Tubarões , Humanos , Animais , Animais Selvagens , Pesqueiros , Indústrias , Autorrelato , Mamíferos
3.
Mar Pollut Bull ; 199: 115952, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142665

RESUMO

Observations of marine debris in Antarctica have been increasing; however, impacts, distributions, sources, and transport pathways of debris remain poorly understood. Here, we describe the spatial distribution, types, and potential origins of marine debris in 2022/2023 near Palmer Station, Antarctica. We opportunistically collected 135 pieces of marine debris with the majority of items found along shorelines (90 %), some found in/near seabird nests/colonies (7 %) and few on inland rocky terrain (3 %). Plastic and abandoned, lost, or discarded fishing gear dominated observed debris. Results suggest that wind and the Antarctic Coastal Current may be a major pathway for debris. This study is the first assessment of marine debris in this region and suggests that oceanography, weather patterns, and shoreline geomorphology could play a role in determining where debris will accumulate. Continued tracking of debris and development of structured surveys is important for understanding the impacts of human activities in a biological hotspot.


Assuntos
Monitoramento Ambiental , Resíduos , Humanos , Resíduos/análise , Regiões Antárticas , Monitoramento Ambiental/métodos , Plásticos , Tempo (Meteorologia)
4.
Nat Commun ; 14(1): 5188, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669922

RESUMO

Marine heatwaves cause widespread environmental, biological, and socio-economic impacts, placing them at the forefront of 21st-century management challenges. However, heatwaves vary in intensity and evolution, and a paucity of information on how this variability impacts marine species limits our ability to proactively manage for these extreme events. Here, we model the effects of four recent heatwaves (2014, 2015, 2019, 2020) in the Northeastern Pacific on the distributions of 14 top predator species of ecological, cultural, and commercial importance. Predicted responses were highly variable across species and heatwaves, ranging from near total loss of habitat to a two-fold increase. Heatwaves rapidly altered political bio-geographies, with up to 10% of predicted habitat across all species shifting jurisdictions during individual heatwaves. The variability in predicted responses across species and heatwaves portends the need for novel management solutions that can rapidly respond to extreme climate events. As proof-of-concept, we developed an operational dynamic ocean management tool that predicts predator distributions and responses to extreme conditions in near real-time.


Assuntos
Clima , Geografia
5.
Proc Biol Sci ; 290(1992): 20222326, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36750186

RESUMO

Forage fishes are key energy conduits that transfer primary and secondary productivity to higher trophic levels. As novel environmental conditions caused by climate change alter ecosystems and predator-prey dynamics, there is a critical need to understand how forage fish control bottom-up forcing of food web dynamics. In the northeast Pacific, northern anchovy (Engraulis mordax) is an important forage species with high interannual variability in population size that subsequently impacts the foraging and reproductive ecology of marine predators. Anchovy habitat suitability from a species distribution model (SDM) was assessed as an indicator of the diet, distribution and reproduction of four predator species. Across 22 years (1998-2019), this anchovy ecosystem indicator (AEI) was significantly positively correlated with diet composition of all species and the distribution of common murres (Uria aalge), Brandt's cormorants (Phalacrocorax penicillatus) and California sea lions (Zalophus californianus), but not rhinoceros auklets (Cerorhinca monocerata). The capacity for the AEI to explain variability in predator reproduction varied by species but was strongest with cormorants and sea lions. The AEI demonstrates the utility of forage SDMs in creating ecosystem indicators to guide ecosystem-based management.


Assuntos
Charadriiformes , Ecossistema , Animais , Cadeia Alimentar , Aves , Peixes , Reprodução
6.
Sci Adv ; 8(44): eabq2109, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36322660

RESUMO

Illegal, unreported, and unregulated (IUU) fishing incurs an annual cost of up to US$25 billion in economic losses, results in substantial losses of aquatic life, and has been linked to human rights violations. Vessel tracking data from the automatic identification system (AIS) are powerful tools for combating IUU, yet AIS transponders can be disabled, reducing its efficacy as a surveillance tool. We present a global dataset of AIS disabling in commercial fisheries, which obscures up to 6% (>4.9 M hours) of vessel activity. Disabling hot spots were located near the exclusive economic zones (EEZs) of Argentina and West African nations and in the Northwest Pacific, all regions of IUU concern. Disabling was highest near transshipment hot spots and near EEZ boundaries, particularly contested ones. We also found links between disabling and location hiding from competitors and pirates. These inferences on where and why activities are obscured provide valuable information to improve fisheries management.

7.
Nat Commun ; 12(1): 6492, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764244

RESUMO

The COVID-19 pandemic caused unprecedented cancellations of fisheries and ecosystem-assessment surveys, resulting in a recession of observations needed for management and conservation globally. This unavoidable reduction of survey data poses challenges for informing biodiversity and ecosystem functioning, developing future stock assessments of harvested species, and providing strategic advice for ecosystem-based management. We present a diversified framework involving integration of monitoring data with empirical models and simulations to inform ecosystem status within the California Current Large Marine Ecosystem. We augment trawl observations collected from a limited fisheries survey with survey effort reduction simulations, use of seabird diets as indicators of fish abundance, and krill species distribution modeling trained on past observations. This diversified approach allows for evaluation of ecosystem status during data-poor situations, especially during the COVID-19 era. The challenges to ecosystem monitoring imposed by the pandemic may be overcome by preparing for unexpected effort reduction, linking disparate ecosystem indicators, and applying new species modeling techniques.


Assuntos
COVID-19/epidemiologia , Conservação dos Recursos Naturais/métodos , Pesqueiros/estatística & dados numéricos , SARS-CoV-2/patogenicidade , Animais , Biodiversidade , COVID-19/transmissão , COVID-19/virologia , Bases de Dados Factuais , Ecossistema , Monitoramento Ambiental/métodos , Peixes , Cadeia Alimentar , Modelos Estatísticos , SARS-CoV-2/isolamento & purificação
8.
Ecol Evol ; 9(16): 9334-9349, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31463025

RESUMO

Despite many studies on Adélie penguin breeding phenology, understanding the drivers of clutch initiation dates (CIDs, egg 1 lay date) is limited or lacks consensus. Here, we investigated Adélie penguin CIDs over 25 years (1991-2016) on two neighboring islands, Torgersen and Humble (<1 km apart), in a rapidly warming region near Palmer Station, Antarctica. We found that sea ice was the primary large-scale driver of CIDs and precipitation was a secondary small-scale driver that fine-tunes CID to island-specific nesting habitat geomorphology. In general, CIDs were earlier (later) when the spring sea ice retreat was earlier (later) and when the preceding annual ice season was shorter (longer). Island-specific effects related to precipitation and island geomorphology caused greater snow accumulation and delayed CIDs by ~2 days on Torgersen compared to Humble Island. When CIDs on the islands were similar, conditions were mild with less snow across breeding sites. At Torgersen Island, the negative relationship between CID and breeding success highlights detrimental effects of delayed breeding and/or snow on penguin fitness. Past phenological studies reported a relationship between air temperature and CID, assumed to be related to precipitation, but we found air temperature was more highly correlated to sea ice, revealing a misinterpretation of temperature effects. Finally, contrasting trends in CIDs based on temporal shifts in regional sea ice patterns revealed trends toward earlier CIDs (4-6 day advance) from 1979 to 2009 as the annual ice season shortened, and later CIDs (7-10 day delay) from 2010 to 2016 as the annual ice season lengthened. Adélie penguins tracked environmental conditions with flexible breeding phenology, but their life history remains vulnerable to subpolar weather conditions that can delay CIDs and decrease breeding success, especially on landscapes where geomorphology facilitates snow accumulation.

9.
Sci Rep ; 9(1): 461, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679554

RESUMO

Fisheries management faces numerous monitoring and enforcement challenges that are becoming more complex as fish stocks are depleted; and illegal, unregulated, and unreported fishing becomes more sophisticated. For remote island nations, the challenges are compounded by a loosely understood association of pelagic stocks to the ocean environment, and the tyranny of distance in monitoring and surveilling large exclusive economic zones (EEZ). An approach to ocean conservation is establishing protected areas, with the Pacific island nation of Palau as a leader with the recently established National Marine Sanctuary, which closes 80% of their EEZ to commercial fishing in 2020. Here we present an EEZ-wide analysis of Palau commercial fishing over a 6-year period (2011-2016), and develop a system for predicting fishing activity accounting for oceanic variables, climate indices, and vessel flag. Linking pelagic habitat to fishing activity provides high-resolution decision aids for management, highlighting the need for EEZ-specific analyses in addressing fisheries.


Assuntos
Ecossistema , Pesqueiros , Conservação dos Recursos Naturais , Modelos Teóricos , Oceano Pacífico
10.
Ecol Evol ; 8(19): 9764-9778, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30386573

RESUMO

Climate-induced range overlap can result in novel interactions between similar species and potentially lead to competitive exclusion. The West Antarctic Peninsula (WAP) is one of the most rapidly warming regions on Earth and is experiencing a poleward climate migration from a polar to subpolar environment. This has resulted in a range expansion of the ice-intolerant gentoo penguins (Pygoscelis papua) and a coincident decrease in ice-obligate Adélie penguins (P. adeliae) near Palmer Station, Anvers Island, WAP. Ecologically similar species that share a limited prey resource must occupy disparate foraging niches in order to co-exist. Therefore, we determined the extent of foraging and dietary niche segregation between Adélie and gentoo penguins during the austral breeding season near Palmer Station. This research was conducted across six breeding seasons, from 2009 to 2014, which allowed us to investigate niche overlap in the context of interannual resource variability. Using biotelemetry and diet sampling, we found substantial overlap in the diets of Adélie and gentoo penguins, who primarily consumed Antarctic krill (Euphausia superba); however, our results showed that Adélie and gentoo penguins partitioned this shared prey resource through horizontal segregation of their core foraging areas. We did not find evidence that Antarctic krill were a limiting resource during the breeding season or that climate-induced sympatry of Adélie and gentoo penguins resulted in competition for prey or caused the subsequent differing population trajectories. This apparent absence of resource competition between Adélie and gentoo penguins throughout this study implies that current population trends in this region are governed by other biological and physical factors. Our results highlight the importance of understanding the mechanistic processes that influence top predator populations in the context of climate-driven ecosystem shifts.

11.
Sci Rep ; 6: 28785, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27352849

RESUMO

The contribution of climate change to shifts in a species' geographic distribution is a critical and often unresolved ecological question. Climate change in Antarctica is asymmetric, with cooling in parts of the continent and warming along the West Antarctic Peninsula (WAP). The Adélie penguin (Pygoscelis adeliae) is a circumpolar meso-predator exposed to the full range of Antarctic climate and is undergoing dramatic population shifts coincident with climate change. We used true presence-absence data on Adélie penguin breeding colonies to estimate past and future changes in habitat suitability during the chick-rearing period based on historic satellite observations and future climate model projections. During the contemporary period, declining Adélie penguin populations experienced more years with warm sea surface temperature compared to populations that are increasing. Based on this relationship, we project that one-third of current Adélie penguin colonies, representing ~20% of their current population, may be in decline by 2060. However, climate model projections suggest refugia may exist in continental Antarctica beyond 2099, buffering species-wide declines. Climate change impacts on penguins in the Antarctic will likely be highly site specific based on regional climate trends, and a southward contraction in the range of Adélie penguins is likely over the next century.


Assuntos
Mudança Climática , Spheniscidae/fisiologia , Distribuição Animal , Animais , Regiões Antárticas , Cruzamento , Dinâmica Populacional
12.
Sci Rep ; 6: 18820, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26732496

RESUMO

Climate-driven sympatry may lead to competition for food resources between species. Rapid warming in the West Antarctic Peninsula (WAP) is coincident with increasing gentoo penguin and decreasing Adélie penguin populations, suggesting that competition for food may exacerbate the Adélie penguin decline. On fine scales, we tested for foraging competition between these species during the chick-rearing period by comparing their foraging behaviors with the distribution of their prey, Antarctic krill. We detected krill aggregations within the horizontal and vertical foraging ranges of Adélie and gentoo penguins, and found that krill selected for habitats that balance the need to consume food and avoid predation. In overlapping Adélie and gentoo penguin foraging areas, four gentoo penguins switched foraging behavior by foraging at deeper depths, a strategy which limits competition with Adélie penguins. This suggests that climate-driven sympatry does not necessarily result in competitive exclusion of Adélie penguins by gentoo penguins. Contrary to a recent theory, which suggests that increased competition for krill is one of the major drivers of Adélie penguin population declines, we suggest that declines in Adélie penguins along the WAP are more likely due to direct and indirect climate impacts on their life histories.


Assuntos
Clima , Ecossistema , Cadeia Alimentar , Simpatria , Animais , Regiões Antárticas , Modelos Teóricos , Comportamento Predatório , Spheniscidae
13.
PLoS One ; 8(11): e81321, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260570

RESUMO

Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) experienced severe declines due to habitat destruction and overfishing beginning in the late 19(th) century. Subsequent to the boom and bust period of exploitation, there has been minimal fishing pressure and improving habitats. However, lack of recovery led to the 2012 listing of Atlantic sturgeon under the Endangered Species Act. Although habitats may be improving, the availability of high quality spawning habitat, essential for the survival and development of eggs and larvae may still be a limiting factor in the recovery of Atlantic sturgeon. To estimate adult Atlantic sturgeon spatial distributions during riverine occupancy in the Delaware River, we utilized a maximum entropy (MaxEnt) approach along with passive biotelemetry during the likely spawning season. We found that substrate composition and distance from the salt front significantly influenced the locations of adult Atlantic sturgeon in the Delaware River. To broaden the scope of this study we projected our model onto four scenarios depicting varying locations of the salt front in the Delaware River: the contemporary location of the salt front during the likely spawning season, the location of the salt front during the historic fishery in the late 19(th) century, an estimated shift in the salt front by the year 2100 due to climate change, and an extreme drought scenario, similar to that which occurred in the 1960's. The movement of the salt front upstream as a result of dredging and climate change likely eliminated historic spawning habitats and currently threatens areas where Atlantic sturgeon spawning may be taking place. Identifying where suitable spawning substrate and water chemistry intersect with the likely occurrence of adult Atlantic sturgeon in the Delaware River highlights essential spawning habitats, enhancing recovery prospects for this imperiled species.


Assuntos
Distribuição Animal/fisiologia , Peixes/fisiologia , Modelos Estatísticos , Reprodução/fisiologia , Animais , Mudança Climática , Delaware , Ecossistema , Espécies em Perigo de Extinção , Entropia , Feminino , Indústrias , Masculino , Rios , Salinidade , Estações do Ano
14.
Glob Chang Biol ; 19(1): 136-48, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23504726

RESUMO

Pygoscelis penguins are experiencing general population declines in their northernmost range whereas there are reported increases in their southernmost range. These changes are coincident with decadal-scale trends in remote sensed observations of sea ice concentrations (SIC) and sea surface temperatures (SST) during the chick-rearing season (austral summer). Using SIC, SST, and bathymetry, we identified separate chick-rearing niche spaces for the three Pygoscelis penguin species and used a maximum entropy approach (MaxEnt) to spatially and temporally model suitable chick-rearing habitats in the Southern Ocean. For all Pygoscelis penguin species, the MaxEnt models predict significant changes in the locations of suitable chick-rearing habitats over the period of 1982-2010. In general, chick-rearing habitat suitability at specific colony locations agreed with the corresponding increases or decreases in documented population trends over the same time period. These changes were the most pronounced along the West Antarctic Peninsula where there has been a rapid warming event during at least the last 50 years.


Assuntos
Ecossistema , Tecnologia de Sensoriamento Remoto , Spheniscidae/fisiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...